thegeneralscience
 joumal

Reactionless propulsion

Antonio Saraiva - 2010-09-20
ajps2@hotmail.com
See the Unified Absolute Relativity Theory at:

> www.wbabin.net/saraiva/saraiva305.pdf www.wbabin.net/saraiva/saraiva306.pdf www.wbabin.net/saraiva/saraiva307.pdf www.wbabin.net/saraiva/saraiva328.pdf www.wbabin.net/stham/saraiva347.pdf www.wbabin.net/stham/saraiva366.pdf

It's possible to violate, locally, the momentum conservation law and make a propulsion system with no reaction mass.

UART general energy formula:

$$
E=h f \frac{c^{2}}{w^{2}}=h f n^{2} ; \quad n=\frac{c}{w}
$$

h - Planck constant; f - Frequency; c - Light speed; w - Phase speed;
n - Refractive index.
Group speed:

$$
V=\frac{c^{2}}{w} \quad \Leftrightarrow \quad E=\frac{h f}{n_{G}{ }^{2}} ; \quad n_{G}=\frac{c}{V}
$$

n_{G}-- Group speed index.
Momentum:

$$
p=\frac{E}{c} \quad \Leftrightarrow \quad p=p_{0} n^{2}
$$

Reactionless system, $\mathrm{n}=1.5$:

$$
\begin{aligned}
& p_{0}=p-p_{M}=p_{0} n^{2}-p_{M} \\
\Leftrightarrow & p_{M}=p_{0}\left(n^{2}-1\right)
\end{aligned}
$$

Frequency:

$$
f=n^{2} f_{0}
$$

Quantum mechanics admit energy conservation violations in time:

$$
\Delta E \Delta t=h
$$

So, it must admit momentum conservation violations in space:

$$
\Delta p \Delta x=h
$$

The reactionless action is the mechanism of the forces. This mechanism generates pushes and pulls.
There's a local violation of the momentum conservation, but if we use a frame out of our universe the violation disappears if the universe moves a little.

If by reactionless action we move a mass of 100 Tons a distance of 10 light years, the universe moves $10^{-31} \mathrm{~m}$.

Our universe can be a subatomic particle in another megauniverse.

